Monday, December 6, 2021

SICK’s Deep Learning brings simplicity to complex AI inspection

SICK has launched a suite of Deep Learning apps and services to simplify machine vision quality inspection for challenging food products and agricultural produce, especially those that have previously defied automation and remained distinguishable only by human inspection.

SICK Deep Learning radically reduces set-up time and cost by enabling Artificial Intelligence image classification to run directly onboard SICK smart devices.

With Deep Learning, programmable SICK devices take decisions automatically using specially-optimised neural networks and run accurate and reliable inspections that would have previously been extremely challenging or simply impossible to achieve in food manufacturing processes.

Developed with user-simplicity at their core, SICK’s Deep Learning products cater for a wide range of needs and skill levels.

The Deep Learning Starter App is designed for easy-set up by entry-level users, while the ready-to-use Intelligent Inspection Sensor App provides quick and easy integration with a large set of configurable machine vision tools.

More experienced programmers and integrators can also create and customise their own Deep Learning sensor apps using the SICK AppSpace software platform.

“With SICK Deep Learning, what formerly took a team of developers half a year to create, can now be achieved for a relatively small investment in a just a few hours,” says Neil Sandhu, SICK’s UK Product Manager for Imaging, Measurement and Ranging.

“Machine builders and production teams alike can revisit inspection processes that have previously been too complex to automate, whether retrofitting systems into existing production environments or developing completely new machines.

“Through a simple step-by-step user interface, the SICK neural networks are trained by being shown example images and learn in the same way that humans do to judge a good inspection and what variations can be tolerated.

“There is no need for laborious development using a set of rules and algorithms to identify defects, find patterns or edges, which can be particularly time-consuming for items that are more difficult to assess such as vegetables, fruit and baked goods, for example.”

Released as part of the initial launch, SICK Deep Learning is available using the Inspector P 621 2D vision sensor, and the SIM 1012 programmable Sensor Integration Machine generally running with SICK’s Picocam or Midicam streaming cameras. The longer-term roll-out will see SICK Deep Learning enabled across both SICK smart 2D and 3D vision sensors, and SICK data processing gateways.

With SICK Deep Learning, the image inference is carried out directly on the device in a short and predictable decision time, without the need for an additional PC, and results are output to the control as sensor values. Because system training is done in the Cloud, there is also no need for separate training hardware or software, saving on implementation time and cost.

Users follow the intuitive graphic interface of the SICK dStudio online service to select and train their neural network in a few simple steps: Once the SICK devices are set up, users are prompted to gather images of the inspection in realistic production conditions, and then sort them into classes.

Using dStudio, the pre-sorted images are uploaded to the Cloud where the image training process is completed by the neural network.

The user can then apply further production images to evaluate and adjust the system. When satisfied, the neural network can be downloaded to the Deep Learning-enabled SICK device, and the automated inference process will begin with no further Cloud connection necessary.

SICK is offering a free trial for users to assess whether Deep Learning is suitable their application and to ensure a simple and quick start. Once onboard, a Deep Learning support portal is also available to guide users through the process, if necessary.

A message from the Editor:

Thank you for reading this story on our news site - please take a moment to read this important message:

As you know, our aim is to bring you, the reader, an editorially led news site and magazine but journalism costs money and we rely on advertising, print and digital revenues to help to support them.

With the Covid-19 pandemic having a major impact on our industry as a whole, the advertising revenues we normally receive, which helps us cover the cost of our journalists and this website, have been drastically affected.

As such we need your help. If you can support our news sites/magazines with either a small donation of even £1, or a subscription to our magazine, which costs just £31.50 per year, (inc p&P and mailed direct to your door) your generosity will help us weather the storm and continue in our quest to deliver quality journalism.

As a subscriber, you will have unlimited access to our web site and magazine. You'll also be offered VIP invitations to our events, preferential rates to all our awards and get access to exclusive newsletters and content.

Just click here to subscribe and in the meantime may I wish you the very best.

Latest news

Related news

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.